

Multithreading Applications in
Version 9.1

Prepared by

International SAS® Training and Consulting

Destiny Corporation

100 Great Meadow Rd Suite 601
Wethersfield, CT 06109-2379

Phone: (860) 721-1684 1-800-7TRAINING Fax: (860)
721-9784

Email: info@destinycorp.com
Web: www.destinycorp.com

Copyright 2003

Multi-Threaded Architecture

One of the most helpful enhancements with SAS software in
Version 9 is its ability to support multi-threaded access to files in the
Data Step and certain procedures. The concept is simple: instead
of using the traditional ‘serial’ approach to either sorting or
summarizing data, SAS breaks up the data into chunks, performs
the operation on each piece with a different processor and then puts
the result back together.

Sorting Analogy

Consider the following analogy for sorting. There are four decks of
playing cards. The goal is to order them. One person can combine
all four decks together to produce an ordered result. Another way is
to have four people each order one deck at the same time. The
ordered four decks are then combined for a final result.

Summarizing Analogy

The goal is to sum a total of 100 numbers. One person can total the
100 numbers. Another way is to have four people each take 25
numbers and produce totals. The four totals are then added to
produce the final result.

The division of labor or tasks in these examples demonstrates why
a multi-threaded architecture provides faster results when available.

Multi-threading is supported for:

1. PROC SORT
2. PROC SUMMARY
3. PROC MEANS
4. PROC REPORT
5. PROC TABULATE
6. PROC SQL
7. PROC REG
8. PROC GLM
9. PROC ROBUSTREG

By default, multi-threading is turned on in Version 9 for all of these
procedures. Therefore, there is a new option available with each
procedure (THREADS/NOTHREADS) to turn this feature off.

CPUCOUNT Option

Multi-threading is much more effective in a multiple processor
environment. For example, if SAS is running on a four processor
server, it will attempt to utilize all of the CPUs available (up to four).
For large SAS jobs, this may impact performance of other
applications or programs running on that server.

The default value of CPUCOUNT is 0. This indicates that SAS use
as many processors as it can access. In some situations, it may be
wise to limit the number of CPUs accessed by SAS by setting this
value to a maximum CPU number. CPUCOUNT is the way to
throttle back the number of processors used in multiple processor
environments.

Benchmarking

In threading environments, it is possible that the CPU time may be
larger than real time/wall time. This may be considered when
scheduling large production jobs.

Scalable Performance Data Architecture

Since Version 6 of SAS, the Scalable Performance Data Server has
been available as a separate product. It allows for breaking apart
data storage to speed up I/O and avoids the traditional ‘serial
based’ I/O architecture. SPDS Software also supported very secure
access to this data. The ideal storage of a data source is split
across several locations that are usually separate disks with
separate disk controllers.

In Version 9 this entire architecture, except for the security model, is
included in Base SAS software.

Scalable Performance Data Engine SPDE

This is a new engine that is part of Base SAS. It is specified on a
libname statement for much quicker access to data stored on disk.
The ideal environment is the same as listed above with the addition
of a metadata repository and index.

To summarize:

• Each data location is stored on a separate disk
• Each disk has a separate disk controller
• Each metadata repository is stored in a separate location
• Each index is stored in a separate location

Scalable Analogy

Consider a two lane highway with two toll booths. Traffic can
proceed through those toll booths at a particular average speed.

Now consider a two lane highway with 10 toll booths. Cars move to
other lanes to pay the tolls and then merge back together into a two
lane highway. Would this be better than the prior analogy?

Suppose a 10 lane highway has 10 toll booths.

Now consider a 10 lane highway with no toll booths.

Which one would be fastest?

SPDE performs best when all functionality is separated into specific
tasks with no interrupting processes to reduce speed. A shared
disk controller would impede application speed. Performance is
best on a 10 lane highway with no toll booths.

Consider the following example which demonstrates the SPDE
syntax.

This form of the libname statement uses the SPDE engine.

There is a separate location for:

1. Metadata
2. Datapath1
3. Datapath2
4. Datapath3
5. Indexes

This example is for syntax only. In an ideal situation, the locations
would all reside on separate disks with different disk controllers.
Note that datapath 3 is defined but not used in this case.

This is a list of the resulting files in these directories.

In this example, there was not enough data to utilize loc3.

Conclusion

Large amounts of data can be processed effectively with this
architecture. The location of data is now split and must be
maintained. This is an important consideration when moving data.
However, the performance efficiency gained may be worth the
additional effort.

For additional information on SPDE, go to the following link:

http://www.destinycorp.com/documentation/spde/index.html

